
 

 

Abstract - One month and one week ahead predictions of 
suburban average electricity load are presented. Although we 
have a lot of data available for our work, only the most recent of 
it may be of importance. Consequently, we managed with limited 
amount of data, and we proposed two independent mutually 
supporting solutions of artificial neural networks (ANN). ANN 
have been proven as very reliable in real time system such is 
electricity consumption.  Prediction with ANN is the topic of our 
previous work where we obtained small prediction errors. In this 
paper it will be shown a comparative analysis of the prediction 
error in the cases of monthly and weekly forecasting of the 
electricity load. In this way, we will try to emphasize importance 
to undertake these predictions in order to reduce the cost of 
production, transmission, consumption and other, of electricity 
load. 
Keynotes— electric load forecast, error prediction, electricity, 
artificial neural networks 

I. INTRODUCTION 

 
Electric load foerecasting has always been important for 

planning power generation and operational decision carried 
out by the manufacturer and utility companies. It is vital in 
many aspects such as providing price effective generation, 
system security, scheduling fuel purchases [1]. The load 
forecast error produces high extra costs: if the load is 
underestimated one has extra costs caused by the damages due 
to lack of energy or by overloading system elements; if the 
load is overestimated, the network investment costs overtake 
the real needs, and the fuel stocks are overvalued, locking up 
capital investment. Consequently, the quality of load 
forecasts, especialy short-term load forecasting, which we 
describe later, has greatly importance for energy supliers, 
utility companies, financial institutions, and other participants 
in electric energy generation, transmission, distribution, and 
martkets [2]. Accurate forecasting is very important as there 
are significant financial implications.  

The power load value is determined by several 
environmental and social factors among which the seasonal 
and daily profiles are the most influential. Temperature and 
air humidity are the primary parameters determining the 
energy consumption generally and especially in urban 
residential areas. Working times, holidays, and seasonal 
behaviour influence the load-time function. 
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All together, the load curve is a nonlinear function of many 
variables that map themselves into it in an unknown way. 

In this paper [3] we found the inspiration for our work. 
Prof. Mendel claims: "Prediction of short time series is a 
topical problem. Cases where the sample length N is too small 
for generating statistically reliable variants of prediction are 
encountered every so often. This form is characteristic of 
many applied problems of prediction in marketing, politology, 
investment planning, and other fields." Further he claims: 
"Statistical analysis suggests that in order to take carefully 
into account all components the prediction base period should 
contain several hundreds of units. For periods of several tens 
of units, satisfactory predictions can be constructed only for 
the time series representable as the sum of the trend, seasonal, 
and random components. What is more, these models must 
have a very limited number of parameters. Series made up by 
the sum of the trend and the random component sometimes 
may be predicted for even a smaller base period. Finally, for a 
prediction base period smaller than some calculated value 
Nmin, a more or less satisfactory prediction on the basis of 
observations is impossible at all, and additional data are 
required". 

Among the fields not mentioned in [3], dealing with really 
small set of data or "prediction base period", we will discuss 
here weekly and monthly short-term prediction of electricity 
loads at suburban level or on the level of a low voltage 
transformer station. In fact, the amount of data available in 
this case is large enough to apply any other forecasting 
method [4,5,6] but looking to the load diagram i.e. weekly 
(and monthly) load-value curves, we easily recognize that past 
values of the consumption are not very helpful when 
prediction is considered. That stands even for data from the 
previous week (month) and for data from the same week 
(month) in the previous month (year). Accordingly, we 
propose the problem of prediction of the load value in the next 
week (month) to be performed as a deterministic prediction 
based on very short time series. To help the prediction, 
however, in an appropriate way, we introduce past values e.g. 
load for the same week (month) but in previous month (year). 
That is in accordance with existing experience claiming that 
every month (week) in the year (month) has its own general 
consumption profile [7].  

II. RELATED WORKS 

The prediction of a time series is synonymous with 
modelling the underlying physical or social process 
responsible for its generation. This is the reason of the task 
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In previous work [8, 19, 20, 21] we presented our ideas 
about method and new architectures of ANN. In the next, we 
will first briefly introduce the feed-forward neural networks 
that will be used as a basic structure for prediction throughout 
this paper.  

In prediction of time series, in our case, a set of observables 
(samples) is given, meaning that only one input signal is 
available being the discretized time [23]. To get the average 
monthly/weekly consumption we averaged the data for every 
month/week of the year/month. According to (1) we are 
predicting one quantity at a time meaning one output is 
needed, too. The values of the output are numbers (average 
power for a period of one month, week). To make the 
forecasting problem numerically feasible we performed 
transformation in both the time variable and the response. The 
time was reduced by t0 so that  

t=t*-t0.             (2)  

Having in mind that t* stands for the time (in month, weeks), 
this reduction gives the value of 0 to the time (t0) related to the 
first sample. The samples are normalized in the following way  

y=y* -M            (3)  

where y* stands for the current value of the target function, M 
is a constant (for example: M=596.859/595.19, being the 
average monthly/weekly consumption for a year/month).  

If the architecture depicted in Fig. 1 was to be implemented 
(with one input and one output terminal) the following series 
would be learned: (ti, f(ti)), i=1,2,....  

Starting with the basic structure of Fig. 1, in [16] possible 
solutions were investigated and two new architectures were 
suggested to be the most convenient for the solution of the 
forecasting problem based on short prediction base period. 
Here, however, having in mind the availability of data related 
to previous year/month, these architectures will be properly 
accommodated. 
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Fig. 2. ETCR. Extended time controlled recurrent ANN 
derivated from TCR [16] 

We presented the first one, named Extended Time 
Controlled Recurrent (ETCR) architecture. It is made from the 

TCR ANN on the way described in [16]. This structure is 
depicted in Fig. 2. 

Here in fact, the network is learning a set in which the 
output value representing the average power consumption for 
a given month/week in a given year/month is controlled by the 
present time and by its own previous instances: 

...3,2,1),,,,( ,13,2,1,,   ipppptfp ininininiin       (4) 

Here n stand for the number of the month/week in the 
year/month. In that way the values indexed with n are from 
the actual year/month, while the value indexed n-1 is from the 
previous year/month. i stands for the i-th sample in the 
year/month selected. The actual value pn,i is unknown and 
should be predicted. Incrementing i, in fact, means moving the 
prediction window one step ahead.  

The second structure was named Extended Feed Forward 
Accommodated for Prediction (EFFAP) and depicted in Fig. 
3. We extended the FFAP architecture exactly in the same 
way as we did with the TCR [16]. Our idea was here to force 
the neural network to learn the same mapping several times 
simultaneously but shifted in time. In that way, we suppose, 
the previous responses of the function will have larger 
influence on the f(t ) mapping. 

In that way for the approximation function we may write 
the following 

{pn,i+1, pn,i, pn,i-1, pn,i-2} = f(ti, pn-1,i}  i=1.2.3...       (5) 

The new network is approximating the future (unknown) 
value pn,i+1, based on the actual time ti, the actual consumption 
pn,i, the past consumption values for the given year/month 
(pn,i-k, k=1,2,3), and the past consumption values for the same 
month/week at the actual time of the previous year/month (pn-

1,i).  

In the next the procedure of implementation of ETCR and 
EFFAP network will be described.  
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Fig. 3. EFFAP. Extended feed forward accommodated for 
prediction ANN derivated from FFAP [16] according to (5) 
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       Fig. 4. Steps in obtaining a prediction 

The new procedure we are promoting in [21] is depicted in 
Fig. 4. We start with a time series obtained from [23]. Then 
we arrange the training sets in two ways appropriate to the 
two ANN structures we use.  

For both EFFAP and ETCR we make eight predictions with 
eight networks with rising number of hidden neurons starting 
with 3 and ending with 10. In that way we obtain two vectors 
of predictions; one for the EFFAP and the other for the ETCR 
ANN.  

In the next step we search the two vectors for the most 
similar prediction that is for predictions which support each 
other. These are picked from their vectors as final ETCR and 
final EFFAP prediction. The process ends by adopting the 
final prediction obtained as an average of the above two. 
Namely, if the two predictions are supporting each other they 
are of equal importance while none may be qualified as the 
better one. So, the average is the best representative. 

IV. DATA AND ERRORS 

 In our work we used data from the UNITE competition  
[23]. Since there are data for two years only, we created 24 
instances for monthly and 101 instances for weekly 
consumption. Having in mind, however that our method asks 
for a value of the load for the same month in the previous 
year, the first 12 instances are to be reserved. Furthermore, to 
start the prediction we need some values of the previous 
months. For these reasons we started the prediction with the 
fourth part of the data i.e. from the 19th month. The weekly 
prediction started at the end of the first year (last week of 
December) which, as will be discovered later is of importance 
for the prediction results. 

TABLE I  
THE MOST SIMILAR ETCR AND EFFAP SOLUTIONS ON RESTORED ORIGINAL 

INPUT DATA FOR MONTHLY PREDICTION 

 

tn 
ECTR EFFAP Average 

(p) 
Expected

mh p mh p 
19 3 501,358 4 512,897 507,128 510,2098
20 9 502,551 3 493,109 497,830 496,3975
21 7 511,576 7 563,501 537,539 536,7299
22 4 598,954 7 614,244 606,600 617,8031
23 4 684,131 7 681,784 682,957 680,6868
24 4 697,091 3 719,561 708,326 717,1586

In order to get even better insight into the results, the 
prediction error was calculated and depicted in Table II. As 
can be seen the error of the average value compared with the 
expected one is less than 2% in all six cases. A graphical 
representation of Table I is given in Fig. 5.  
 

TABLE II 
 PREDICTION ERROR FOR MONTHLY PREDICTION 

 

tn 
Error (%) 

ECTR 
Error (%) 
EFFAP 

Error (%)
Average 

19 1,735 -0,5267 0,604
20 -1,240 0,6625 -0,289
21 4,687 -4,988 -0,151
22 3,051 0,576 1,813
23 -0,506 -0,161 -0,334
24 2,798 -0,335 1,232

 
 It is interesting to note that the prediction errors of the 
ETCR and the EFFAP ANNs are much larger (less than 6%). 
That means that the worst prediction would never exceed that 
value. By good luck, however, in this case, cancellation 
occurred during the computation of the average which led to 
an extraordinary good result. 
 

TABLE III 
 THE MOST SIMILAR ETCR AND EFFAP SOLUTIONS ON RESTORED ORIGINAL 

INPUT DATA FOR WEEKLY PREDICTION 

 

tn 
ECTR EFFAP Average 

p 
Expected

p mh p mh p 

51 5 746.759 5 736.506 741.633 615.027
52 7 662.406 8 663.523 662.964 647.869
53 3 579.127 9 706.465 642.796 661.6578
54 9 740.493 8 635.385 687.939 683.78
55 10 675.972 5 668.981 672.477 696.83
56 5 697.742 8 698.717 698.23 726.75
57 9 761.235 10 762.086 761.66 726.583
58 6 716.076 6 719.692 717.884 690.366
59 6 670.976 4 687.522 679.249 668.848
60 4 662.313 6 663.963 663.138 649.366
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suburban level. Prediction was carried out on real data taken 
the literature. Acceptable prediction errors were obtained.    
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